Project Overview & Update

Old Lyme Shared Sewer Project Alliance

Miami Beach ● Old Colony Beach Association
Old Lyme Shores Beach Association ● Town of Old Lyme (Sound View)

August 27, 2022
Meeting Expectations

▪ Our topic regards the status of the Old Lyme regional wastewater system

▪ Our purpose is to provide public information – please hold your questions for your local WPCA board

▪ Welcome our invited guests:
 - Richard Blumenthal, Senator (CT)
 - Paul Formica, State Senator (20th Senate District)
 - Tim Griswold, First Selectman (Town of Old Lyme)
Some Definitions

▪ Consent Order

A consent order is a type of order issued by the Commissioner. It is not a contract and should not be labeled “consent agreement.” A consent order is enforceable as an order, which means that statutory penalties are applicable for noncompliance with it, and a lawsuit to enforce the consent order will have precedence in Superior Court over other lawsuits. (Reference)

▪ Equivalent Dwelling Unit (EDU)

Unit of demand on facilities equivalent to a typical single-family dwelling

▪ Benefit Assessment

Charge that a municipality or wastewater district places against a property to recover the cost of capital expenditures for the acquisition, construction, or upgrading of wastewater collection, conveyance, or treatment facilities
Overview

- Project History
 - Problem Statement
 - Our Shared Objectives
 - Our Shared Challenges
 - Our Solution
 - Accomplishments

- Costs & Funding
 - Cost Sharing Agreement
 - Understanding the Real Project Cost
 - Costs within Each Participating Entity

- Next Steps
Timeline

- 2010: Facilities Plan (Fuss & O’Neill)
- 2012: Vote for Wastewater Control Study (OLSBA)
- 2014: Consent Order (CT DEEP)
- 2016: Ordinance Establishing WPCA (OLSBA)
- 2018: Coastal Wastewater Local Plan (Woodard & Curran)
- 2020: Pandemic
- 2022: Unacceptable Bids
 - Amended WPCA Ordinance (OLSBA)
 - Unified Consent Order (CT DEEP)
 - New London Agreement
 - East Lyme Agreement

Legend:
- OLSBA Actions
- Intermunicipal Agreements
- Engineering Studies
- State of Connecticut Actions
- Other Items
Our Problem

- Our septic systems, groundwater and stormwater runoff contribute to polluting Long Island Sound, an Estuary of National Significance, that contributes $9.5B annually to the Connecticut economy
 - Creates hazards for human use of the Sound
 - Threatens wildlife and ecological stability of the Sound
- Connecticut DEEP issued remediation Consent Orders
 - Consent Order for the Town of Old Lyme AOWRMU 15002 / JUN15
 - Unified Consent Order for the Three Beaches COWRMU 18001 / FEB18

Statement of Noncompliance with Consent Orders

These consent orders are a final order of the Commissioner with respect to the matter addressed herein and is non-appealable and immediately enforceable. Failure to comply with these consent orders may subject the Beach Associations and Town of Old Lyme to an injunction and penalties.
Our Shared Objectives

▪ **Construct** a regional, coastal wastewater project that services the contiguous area including Miami Beach, Sound View, Old Colony, & Old Lyme Shores

▪ **Remediate** the pollution impact to Long Island Sound resulting from wastewater and stormwater runoff in the area

▪ **Comply** with State of Connecticut Department of Energy & Environmental Protection Consent Orders
Our Shared Challenges

- High density of development
- Undersized lot areas
- Shallow groundwater
- Flood risk
- Fast draining (sandy) soils
Challenge: High Density of Development

- Minimum horizontal separation from other septic systems or other receptors of environmental or public health concern
 - Stormwater swale
 - Watercourse
 - Inhabited dwelling
 - Drinking well
- Requires one or more public health code variances
- Overburdens soil conditions, leading to more urgent need to address issues
Challenge: Undersized Lots

- Each non-conforming lot
 - **Variance**: Requires one or more public health code variances to be approved
 - **Custom Solutions**: Demands a customized solution for each lot, driving up cost and complexity
Challenge: Shallow Groundwater

- Public health codes require >29” between the bottom of leaching field and the top of mean seasonal groundwater
- Standard septic leaching fields require 36-48” depth
- Groundwater tests in 2011 found depth at 22-43”
- Very difficult to effect proper aerobic treatment before leaching into ground
- Documented problems with leaching
Challenge: Flood Risk

- Storm surges (e.g. *Hurricane Irene, Storm Sandy*) bring ocean water inland
 - Pollutes drinking water
 - Renders onsite wastewater systems ineffective
- Engineered systems are costly & unsightly, with
 - Raised platforms for electrical components
 - Watertight enclosures
Challenge: Fast Draining Soils

- Adequate travel time required for nitrogen compound mitigation
- Fast soil percolation rates (<10m/in) common
- Common to coastal environments
- Groundwater quality tests performed in 2011 showed consistently high bacteriological counts in all areas
- Surface water samples showed very high bacteriological counts
Explored Options

- Conventional Septic System Upgrades
- Small Community Systems
- Advanced Treatment Units (aka Engineered Septic Systems)
- Centralized Sewer System
Option: Conventional Septic System Upgrades

- Upgrades to existing onsite wastewater treatment systems
- Option **rejected**, because:
 - Many existing systems do not meet current code requirements
 - Prevailing site conditions (mentioned previously) make compliance impossible for too many systems
 - Kicks the can down the road and will ultimately require reckoning
Option: Small Community Systems

- Combined wastewater flows conveyed to a centralized location for treatment and subsurface disposal

- Option rejected, because:
 - No suitable sites could be identified in discussions with DEEP
 - High construction and operational costs
 - Negative impact on nearby drinking water sources
Option: Advanced Treatment Units

- Each lot installs and maintains its own miniaturized wastewater treatment plant
- Requires custom design for each site/lot to accommodate unique conditions
- Annual spring system start-up requirement for proper operation
- Requires an annual operation & maintenance contract for life of the system

Option rejected, because:
 - Excessive cost for design, installation, and maintenance
 - Not acceptable in flood zones
Option: Centralized Sewer System

- Gravity pipes convey wastewater from beaches through East Lyme and Waterford via centralized pump station and force main pipe
- Wastewater delivered to New London wastewater treatment facility
- Well understood technology available for 4,000 years of history

Option selected, because
 - Solution available to 100% of residents
 - Lowest capital cost
 - Lowest operational and maintenance cost
Comparison of Alternatives

- **Total lifetime cost of ownership of the solution**
 - Non-sewer solutions ultimately costs 50-80% more than a sewer solution
 - Operations & maintenance costs are 5X greater for non-sewer solutions

- **Feasibility and inclusivity of the solution**
 - Sewer solution offers **100% inclusivity** with no technical barriers
 - Advanced treatment units cannot be installed in all cases, very high costs
 - Small community system has no viable site for the solution

- **Delegating individual septic solutions**
 - With ~2% of lots conforming, this approach dumps a heavy load on almost all other homeowners to obtain variances, perform site specific engineering studies, manage contractors, and absorb future operations and maintenance costs
Solution: Centralized Sewer System

- Effective
- Inclusive
- Economical
- Compliant
- Supported
- Reliable
- Maintainable
- Safe
Solution Scope: Wastewater, Drinking Water, Stormwater, & Roadways

- Adding a centralized sewer system motivates inclusion of additional project elements:

 Roadway Paving: Installation requires excavation of roadways and thus their repair or replacement

 Drinking Water Safeguards: DEEP engineers prefer metered inflows and outflows to identify future problems

 Stormwater Management: Opportunistic remediation of upstream contributions to Long Island Sound pollution

* Each association has its own constraints and requirements
Accomplishments

- Concluded all inter-municipal agreements
- Added the Town of Old Lyme to original Three Beaches to offset shared infrastructure costs
- Deferred obligation to begin repayment of state funds provided for design phase
- Successfully concluded the planning, contracting, and design phases
- Retained strong support for the project, even with challenges

Cost Sharing Agreement
- Old Lyme Shores, Old Colony, Miami Beach, & Town of Old Lyme

Town of East Lyme
- Conveyance agreement (includes Waterford)

City of New London
- Waste processing agreement
Costs & Funding

▪ Shared Infrastructure

▪ Entity Specific Costs
 • Sewers (Wastewater)
 • Drinking Water
 • Stormwater & Drainage
 • Roadway Paving
<table>
<thead>
<tr>
<th>Cost Allocations</th>
<th>Funding Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Shared Infrastructure</td>
<td>▪ Benefit Assessment</td>
</tr>
<tr>
<td>▪ Entity Specific Costs</td>
<td>• CT 20 yr note @ 2%</td>
</tr>
<tr>
<td>• Sewers (Wastewater)</td>
<td>▪ Grant Funding</td>
</tr>
<tr>
<td>• Drinking Water</td>
<td>▪ Tax / Assessment</td>
</tr>
<tr>
<td>• Stormwater & Drainage</td>
<td>▪ Flat/Even – by property/EDU</td>
</tr>
<tr>
<td>• Roadway Paving</td>
<td>▪ Progressive – by valuation</td>
</tr>
<tr>
<td></td>
<td>▪ Metered – by utilization</td>
</tr>
</tbody>
</table>
Costs: Shared Infrastructure Allocations

<table>
<thead>
<tr>
<th>Entity</th>
<th>EDU</th>
<th>Share Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town of Old Lyme</td>
<td>270</td>
<td>29.7%</td>
</tr>
<tr>
<td>Miami Beach</td>
<td>226</td>
<td>24.9%</td>
</tr>
<tr>
<td>Old Colony Beach</td>
<td>221</td>
<td>24.3%</td>
</tr>
<tr>
<td>Old Lyme Shores</td>
<td>192</td>
<td>21.1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>909</td>
<td>100%</td>
</tr>
</tbody>
</table>
Costs: Shared Infrastructure

- Shared Force Main Design & Construction
- Pump Station(s) Construction & Upgrades
- Connection Buy-In, & Transit Charges (East Lyme, New London)
- Engineering & Technical Services
- Legal & Administrative

<table>
<thead>
<tr>
<th>Entity</th>
<th>EDU</th>
<th>Share Percent</th>
<th>Shared Cost (Est)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound View</td>
<td>270</td>
<td>29.7%</td>
<td>$4,900,000</td>
</tr>
<tr>
<td>Miami Beach</td>
<td>226</td>
<td>24.9%</td>
<td>$4,100,000</td>
</tr>
<tr>
<td>Old Colony Beach</td>
<td>221</td>
<td>24.3%</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>Old Lyme Shores</td>
<td>192</td>
<td>21.1%</td>
<td>$3,500,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>909</td>
<td>100.0%</td>
<td>$16,500,000</td>
</tr>
</tbody>
</table>
Projected Cost: Miami Beach

- ~3 miles of private roads, more than any other association

- Complex subsoil conditions (peat, water table) along Pond Rd. drive additional costs

- Shallow and dense well placement require pipe liners

- Addition of stormwater increases costs by 15%

<table>
<thead>
<tr>
<th>Sewer & Roads</th>
<th>Annual</th>
<th>Biannual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost with DEEP CWF Grant</td>
<td>$3,596</td>
<td>$1,791</td>
</tr>
<tr>
<td>Cost with DEEP & Federal Grants†</td>
<td>$2,587</td>
<td>$1,288</td>
</tr>
</tbody>
</table>

† For illustration only, no funds yet obtained

<table>
<thead>
<tr>
<th>Total Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewers & Roads</td>
<td>$16,288,076</td>
</tr>
<tr>
<td>Stormwater</td>
<td>$2,003,023</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$18,291,099</td>
</tr>
</tbody>
</table>
Projected Cost: Old Colony Beach

<table>
<thead>
<tr>
<th></th>
<th>Sewer & Roads</th>
<th>Annual</th>
<th>Biannual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost with DEEP CWF Grant</td>
<td></td>
<td>$2,600</td>
<td>$1,300</td>
</tr>
<tr>
<td>Cost with DEEP & Federal Grants†</td>
<td></td>
<td>$1,767</td>
<td>$ 884</td>
</tr>
</tbody>
</table>

† For illustration only, no funds yet obtained

- Storm drainage improvements
- Intersection sightline improvements
- Painted stop bars at all intersections
- All roads two-way with line striping
- Traffic calming speed humps
- Proper road pitch to remove ponding

Total Costs

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewers & Roads</td>
<td>$8,484,417</td>
<td></td>
</tr>
<tr>
<td>Stormwater</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>$8,484,417</td>
<td></td>
</tr>
</tbody>
</table>
Projected Cost: Old Lyme Shores

- Significant excavation challenges due to ledge rock
- Road improvements for improved safety and utility
- Improvements to stormwater management to mitigate ponding

<table>
<thead>
<tr>
<th>Sewer & Roads</th>
<th>Annual</th>
<th>Biannual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost with DEEP CWF Grant</td>
<td>$3,730</td>
<td>$1,865</td>
</tr>
<tr>
<td>Cost with DEEP & Federal Grants†</td>
<td>$2,900</td>
<td>$1,450</td>
</tr>
</tbody>
</table>

† For illustration only, no funds yet obtained

<table>
<thead>
<tr>
<th>Total Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewers & Roads</td>
<td>$10,000,743</td>
</tr>
<tr>
<td>Stormwater</td>
<td>$1,898,573</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$11,899,316</td>
</tr>
</tbody>
</table>
Projected Cost: Sound View

<table>
<thead>
<tr>
<th></th>
<th>Sewer & Roads</th>
<th>Annual</th>
<th>Biannual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost with DEEP CWF Grant</td>
<td>$2,140</td>
<td>$1,066</td>
<td></td>
</tr>
<tr>
<td>Cost with DEEP & Federal Grants†</td>
<td>$1,252</td>
<td>$623</td>
<td></td>
</tr>
</tbody>
</table>

† For illustration only, no funds yet obtained

- Includes shared costs, internals, & inter municipal agreements
- Roads patch and public roads paved by the Town of Old Lyme
- Drinking water already handled by Connecticut Water
- Stormwater is a separate project and funding

<table>
<thead>
<tr>
<th></th>
<th>Sewers & Roads</th>
<th>IMAs</th>
<th>Stormwater</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Costs</td>
<td>$9,357,524</td>
<td>$879,154</td>
<td>n/a</td>
<td>$10,233,678</td>
</tr>
</tbody>
</table>
Individual Cost Obligations

▪ Septic System Abandonment & Sewer Connection to Dwelling

 • *Depends on site conditions, can vary significantly by association*

 • *More information forthcoming from each WPCA*
Late Breaking News

- Not selected for latest round of Senate funding
 - Common to need several rounds of requests
 - Many funded programs remain available
 - We continue to pursue these sources of support

- Our existing agreements have drop dates, which imparts urgency to find resolution
 - CT DEEP has been a good partner in this effort
 - We will continue to work together to find a solution that is environmentally effective and economically viable
Next Steps

- Interim Funding Obligations (IFO) due 31JAN2023
- Pursue additional grants and subsidies from state and federal programs
- Investigate other opportunities for cost mitigation
- Each beach may hold referendum to reauthorize projects with updated cost and funding information
- Maintain collaborative and productive relationships with all project stakeholders
Q&A

- This presentation should have answered many of the questions that we received.
- We have some additional questions to address separately now.
- The remainder of the questions should be taken up with each member’s WPCA representatives.